Course details
The job of a data scientist is to glean knowledge from complex and noisy datasets. Reasoning about uncertainty is inherent in the analysis of noisy data. Probability and Statistics provide the mathematical foundation for such reasoning. In this course, part of the Data Science MicroMasters program, you will learn the foundations of probability and statistics. You will learn both the mathematical theory, and get a hands-on experience of applying this theory to actual data using Jupyter notebooks. Concepts covered included: random variables, dependence, correlation, regression, PCA, entropy and MDL. Updated on 17 September, 2019- Graph Theory Course CentralAED 83
AED 661Duration: Upto 10 Hours - Functional Skills Math QLS Level 2 StudyPlexAED 60
AED 661Duration: Upto 12 Hours