Programming Statistical Applications in R Udemy
Price: USD 75
  • Duration: Flexible

Course details

Programming Statistical Applications in R is an introductory course teaching the basics of programming mathematical and statistical applications using the R language. The course makes extensive use of the Introduction to Scientific Programming and Simulation using R (spuRs) package from the Comprehensive R Archive Network (CRAN). The course is a scientific-programming foundations course and is a useful complement and precursor to the more simulation-application oriented R Programming for Simulation and Monte-Carlo Methods Udemy course. The two courses were originally developed as a two-course sequence (although they do share some exercises in common). Together, both courses provide a powerful set of unique and useful instruction about how to create your own mathematical and statistical functions and applications using R software.

Programming Statistical Applications in R is a "hands-on" course that comprehensively teaches fundamental R programming skills, concepts and techniques useful for developing statistical applications with R software. The course also uses dozens of "real-world" scientific function examples. It is not necessary for a student to be familiar with R, nor is it necessary to be knowledgeable about programming in general, to successfully complete this course. This course is 'self-contained' and includes all materials, slides, exercises (and solutions); in fact, everything that is seen in the course video lessons is included in zipped, downloadable materials files. The course is a great instructional resource for anyone interested in refining their skills and knowledge about statistical programming using the R language. It would be useful for practicing quantitative analysis professionals, and for undergraduate and graduate students seeking new job-related skills and/or skills applicable to the analysis of research data.

The course begins with basic instruction about installing and using the R console and the RStudio application and provides necessary instruction for creating and executing R scripts and R functions. Basic R data structures are explained, followed by instruction on data input and output and on basic R programming techniques and control structures. Detailed examples of creating new statistical R functions, and of using existing statistical R functions, are presented. Boostrap and Jackknife resampling methods are explained in detail, as are methods and techniques for estimating inference and for constructing confidence intervals, as well as of performing N-fold cross validation assessments of competing statistical models. Finally, detailed instructions and examples for debugging and for making R programs run more efficiently are demonstrated.

Updated on 14 November, 2018
Courses you can instantly connect with... Do an online course on Statistics starting now. See all courses

Is this the right course for you?

Didn't find what you were looking for ?

or