Course details
Our capacity to collect and store data has exponentially increased, but deriving information from data from a scientific perspective requires a foundational knowledge of probability. Are you interested in a career in the emerging data science field, or as an actuarial scientist? Or want better to understand statistical theory and mathematical modeling? In this statistics and data analysis course, we will provide an introduction to mathematical probability to help meet your career goals in the exciting new areas becoming known as information science. In this course, we will first introduce basic probability concepts and rules, including Bayes theorem, probability mass functions and CDFs, joint distributions and expected values. Then we will discuss a few important probability distribution models with discrete random variables, including Bernoulli and Binomial distributions, Geometric distribution, Negative Binomial distribution, Poisson distribution, Hypergeometric distribution and discrete uniform distribution. To continue learning about probability, enroll in Probability: Distribution Models & Continuous Random Variables, which covers continuous distribution models, central limit theorem and more. The Center for Science of Information, a National Science Foundation Center, supports learners by offering free educational resources in information science. Updated on 17 September, 2019- JavaScript Full stack web developer virtual internship Virtual Bootcamp + Internship at LaimoonAED 1,449Duration: Upto 30 Hours
- Vedic Maths Complete Learning Course CentralUSD 23
USD 140Duration: Upto 15 Hours - Math Fundamentals Course CloudUSD 15
USD 340Duration: Upto 9 Hours - USD 2,967Duration: 12 Weeks Live virtual classroom