Course details
Given the constantly increasing amounts of data they're faced with, programmers have to come up with better solutions to make machines smarter and reduce manual work. In this Machine Learning course, you'll use Python to craft better solutions and process them effectively.
We start by focusing on key ML algorithms and how they can be trained for classification and regression. We will also work with Supervised and Unsupervised learning to help to get to grips with both types of algorithm. We will use the highly popular Scikit-learn library throughout the course while performing various ML tasks.
By the end of the course, you will be adept at using the concepts and algorithms involved in Machine Learning. This is a highly practical course and will equip you with sufficient hands-on training to help you implement ML skills right after finishing the course.
All the code and supporting files for this course are available
About the Author
After taking a Physics degree at Oxford, Thomas Snell entered the Biophysics industry. Performing numerical simulation; from there, took a numerical simulation PhD in Geophysics. During his PhD, Thomas developed a keen interest in Machine Learning, eventually founding two open source projects: a cryptocurrency trader and an evolutionary system to design quantum algorithms. Shortly after sharing these projects with the open source community, he worked as a Data Scientist while finishing his PhD, developing a system to cluster job data and predict career paths for groups of individuals.
Updated on 14 November, 2018- JavaScript Full stack web developer virtual internship Virtual Bootcamp + Internship at LaimoonAED 1,449Duration: Upto 30 Hours
- Machine Learning Diploma Lead AcademyAED 92
AED 1,432Duration: Upto 12 Hours - AED 99
AED 451Duration: Upto 93 Hours - AED 10,898Duration: 12 Weeks Live virtual classroom