Udemy Data Science: Supervised Machine Learning in Python Udemy
Price: AED 441
  • Duration: Flexible

Course details

In recent years, we've seen a resurgence in AI, or artificial intelligence, and machine learning.

Machine learning has led to some amazing results, like being able to analyze medical images and predict diseases on-par with human experts.

Google's AlphaGo program was able to beat a world champion in the strategy game go using deep reinforcement learning.

Machine learning is even being used to program self driving cars, which is going to change the automotive industry forever. Imagine a world with drastically reduced car accidents, simply by removing the element of human error.

Google famously announced that they are now "machine learning first", meaning that machine learning is going to get a lot more attention now, and this is what's going to drive innovation in the coming years. It's embedded into all sorts of different products.

Machine learning is used in many industries, like finance, online advertising, medicine, and robotics.

It is a widely applicable tool that will benefit you no matter what industry you're in, and it will also open up a ton of career opportunities once you get good.

Machine learning also raises some philosophical questions. Are we building a machine that can think? What does it mean to be conscious? Will computers one day take over the world?

In this course, we are first going to discuss the K-Nearest Neighbor algorithm. Its extremely simple and intuitive, and its a great first classification algorithm to learn. After we discuss the concepts and implement it in code, well look at some ways in which KNN can fail.

Its important to know both the advantages and disadvantages of each algorithm we look at.

Next well look at the Naive Bayes Classifier and the General Bayes Classifier. This is a very interesting algorithm to look at because it is grounded in probability.

Well see how we can transform the Bayes Classifier into a linear and quadratic classifier to speed up our calculations.

Next well look at the famous Decision Tree algorithm. This is the most complex of the algorithms well study, and most courses youll look at wont implement them. We will, since I believe implementation is good practice.

The last algorithm well look at is the Perceptron algorithm. Perceptrons are the ancestor of neural networks and deep learning, so they are important to study in the context of machine learning.

One weve studied these algorithms, well move to more practical machine learning topics. Hyperparameters, cross-validation, feature extraction, feature selection, and multiclass classification.

Well do a comparison with deep learning so you understand the pros and cons of each approach.

Well discuss the Sci-Kit Learn library, because even though implementing your own algorithms is fun and educational, you should use optimized and well-tested code in your actual work.

Well cap things off with a very practical, real-world example by writing a web service that runs a machine learning model and makes predictions. This is something that real companies do and make money from.

All the materials for this course are FREE. You can download and installPython, Numpy, andScipywith simple commands onWindows, Linux, or Mac.

This course focuses on "how to build and understand", not just "how to use". Anyone can learn to use an API in 15 minutes after reading some documentation. It's not about "remembering facts", it's about "seeing for yourself" via experimentation. It will teach you how to visualize what's happening in the model internally. If you want more than just a superficial look at machine learning models, this course is for you.


NOTES:

All the code for this course can be downloaded from my github: /lazyprogrammer/machine_learning_examples

In the directory: supervised_class

Make sure you always "git pull" so you have the latest version!


HARD PREREQUISITES /KNOWLEDGEYOUARE ASSUMEDTOHAVE:

  • calculus
  • probability (continuous and discrete distributions, joint, marginal, conditional, PDF, PMF, CDF, Bayes rule)
  • Python coding: if/else, loops, lists, dicts, sets
  • Numpy, Scipy, Matplotlib


TIPS (for getting through the course):

  • Watch it at 2x.
  • Take handwritten notes. This will drastically increase your ability to retain the information.
  • Write down the equations. If you don't, I guarantee it will just look like gibberish.
  • Ask lots of questions on the discussion board. The more the better!
  • Realize that most exercises will take you days or weeks to complete.
  • Write code yourself, don't just sit there and look at my code.


WHATORDERSHOULDITAKEYOURCOURSESIN?:

  • Check out the lecture "What order should I take your courses in?" (available in the Appendix of any of my courses, including the free Numpy course)


Updated on 14 November, 2018
Courses you can instantly connect with... Do an online course on Machine Learning starting now. See all courses