تفاصيل الدورة
This course is the next logical step in my deep learning, data science, and machine learning series. Ive done a lot of courses about deep learning, and I just released a course about unsupervised learning, where I talked about clustering and density estimation. So what do you get when you put these 2 together? Unsupervised deep learning!
In these course well start with some very basic stuff - principal components analysis (PCA), and a popular nonlinear dimensionality reduction technique known as t-SNE (t-distributed stochastic neighbor embedding).
Next, well look at a special type of unsupervised neural network called the autoencoder. After describing how an autoencoder works, Ill show you how you can link a bunch of them together to form a deep stack of autoencoders, that leads to better performance of a supervised deep neural network. Autoencoders are like a non-linear form of PCA.
Last, well look at restricted Boltzmann machines (RBMs). These are yet another popular unsupervised neural network, that you can use in the same way as autoencoders to pretrain your supervised deep neural network. Ill show you an interesting way of training restricted Boltzmann machines, known as Gibbs sampling, a special case of Markov Chain Monte Carlo,and Ill demonstrate how even though this method is only a rough approximation, it still ends up reducing other cost functions, such as the one used for autoencoders. This method is also known as Contrastive Divergence or CD-k. As in physical systems, we define a concept called free energy and attempt to minimize this quantity.
Finally, well bring all these concepts together and Ill show you visually what happens when you use PCA and t-SNE on the features that the autoencoders and RBMs have learned, and well see that even without labels the results suggest that a pattern has been found.
All the materials used in this course are FREE. Since this course is the 4th in the deep learning series, I will assume you already know calculus, linear algebra, andPython coding. You'll want to install Numpy,Theano, and Tensorflowfor this course. These are essential items in yourdata analytics toolbox.
If you are interested in deep learning and you want to learn about modern deep learning developments beyond just plain backpropagation, including using unsupervised neural networks to interpret what features can be automatically and hierarchically learned in a deep learning system,this course is for you.
This course focuses on "how to build and understand", not just "how to use". Anyone can learn to use an API in 15 minutes after reading some documentation. It's not about "remembering facts", it's about"seeing for yourself" via experimentation. It will teach you how to visualize what's happening in the model internally. If you wantmorethan just a superficial look at machine learning models, this course is for you.
NOTES:
All the code for this course can be downloaded from my github: /lazyprogrammer/machine_learning_examples
In the directory: unsupervised_class2
Make sure you always "git pull" so you have the latest version!
HARD PREREQUISITES /KNOWLEDGEYOUARE ASSUMEDTOHAVE:
- calculus
- linear algebra
- probability
- Python coding: if/else, loops, lists, dicts, sets
- Numpy coding: matrix and vector operations, loading a CSV file
- can write a feedforwardneural network in Theano or Tensorflow
TIPS (for getting through the course):
- Watch it at 2x.
- Take handwritten notes. This will drastically increase your ability to retain the information.
- Write down the equations. If you don't, I guarantee it will just look like gibberish.
- Ask lots of questions on the discussion board. The more the better!
- Realize that most exercises will take you days or weeks to complete.
- Write code yourself, don't just sit there and look at my code.
WHATORDERSHOULDITAKEYOURCOURSESIN?:
- Check out the lecture "What order should I take your courses in?" (available in the Appendix of any of my courses, including the free Numpy course)
- JavaScript Full stack web developer virtual internship Virtual Bootcamp + Internship at Laimoon1,449 درهممدة الدورة التدريبية: Upto 30 Hours
- ChatGPT Secrets Beginner ChatGPT Ninja 2023 Course Line88 درهم
1,763 درهممدة الدورة التدريبية: Upto 3 Hours - Machine Learning Diploma QLS Level 5 StudyPlex60 درهم
661 درهممدة الدورة التدريبية: Upto 13 Hours - 10,898 درهممدة الدورة التدريبية: 12 Weeks دورة إفتراضية أونلاين