Data-Science & Machine Learning with Python
السعر: 2,999 درهم
تدريب إفتراضي أونلاين. المحاضرات قد تكون فردية أو ضمن مجموعة.

    تفاصيل الدورة

    COURSE MAJORS:
    Introduction to Big Data | Python for Data Science | SQL Primer for
    Data Science | Data Visualization with Python | Statistics for Data
    Science | Exploratory Data Analysis | Linear Algebra for Data Science
    | Research Methodology | Supervised Machine Learning-Regression
    Analysis | Supervised Machine Learning-Classification | Unsupervised
    Machine Learning - Clustering Analysis & Association Rules | Hyper
    Parameter Optimization | Model Performance Assessment | Machine
    Learning- Natural Language Processing | Artificial Neural Networks
    with TensorFlow 2 | Convolutional Neural Networks | Real-world
    Project Implementations (15+)
    INTRODUCTION TO BIG DATA

    Introduction to Big Data, State of the practice in analytics

    Current Analytical Architecture, Drivers of Big Data, Emerging Big Data Ecosystem

    Big Data Analytics Project Life Cycle: Overview, Phase 1- Discovery, Phase 2- Data
    preparation, Phase 3-Model Planning, Phase 4- Model Building, Phase 5- Communicate Results,
    Phase 6- Operationalize.

    Introduction to Machine Learning
    PYTHON FOR DATA SCIENCE

    Module 1: Introduction to Python, What is Python and history of Python?, Unique features
    of Python, Python-2 and Python-3 differences, Install Python and Environment Setup, First
    Python Program, Python Identifiers, Keywords and Indentation, Comments and document
    interlude in Python, Command line arguments, Getting User Input, Python Data Types, What
    are variables, Python Core objects and Functions, Number and Maths.

    Module 2: List, Ranges & Tuples in Python, Introduction, Lists in Python, Understanding
    Iterators, Generators, Comprehensions and Lambda Expressions, Introduction, and Yield,
    Next and Ranges, Ordered Sets with tuples.

    Module 3: Python Dictionaries and Sets, Dictionaries, More on Dictionaries, Sets, Python
    Sets Example.

    Module 4: Input and Output in Python, Reading and writing in the file, Writing Binary Files
    Manually, Text Files, Appending to Files and Using Pickle to Write Binary Files.

    Module 5: Python built in function, Python user defined functions, Python packages functions,
    Defining and calling Function, The anonymous Functions Loops and statement in Python,
    Python Modules & Packages.

    Module 6: Python Regular Expressions: What are regular expressions? The match Function,
    the search Function, Matching vs searching, Search and Replace, Extended Regular
    Expressions, Wildcard.

    Module 7: Python For Data Analysis Numpy : Introduction to Numpy, Creating arrays,
    Using arrays and Scalars, Indexing Arrays, Array Transposition, Universal Array Function,
    Array Processing, Array Input and Output.

    Module 8: Python for Data Analysis Pandas: What is pandas? Where it is used? Series
    in pandas, Index objects Reindex, Drop Entry, Selecting Entries, Data Alignment, Rank and Sort, Summary Statistics, Missing Data, index Hierarchy, Matplotlib: Python for Data
    Visualization.
    Module 9: Using Databases in Python, Python MySQL Database Access, Install the MySQLDB
    and other Packages, Create Database Connection, CREATE, INSERT, READ, UPDATE and
    DELETE Operation, DML and DDL Operation with Databases, Handling Database Errors,
    Web Scraping in Python.
    SQL PRIMER FOR DATA SCIENCE
    Introduction
    Data vs. Information
    History of the Database
    Major Transformations in Computing
    Entities and Attributes
    Conceptual and Physical Models
    Entities, Instance, Attributes, and Identifiers
    Entity Relationship Modeling and ERDs
    SELECT and WHERE
    Columns, Characters, and Rows
    Limit Rows Selected | Comparison Operators
    WHERE, ORDER BY, GROUP BY, HAVING and Intro to Functions
    Logical Comparisons and Precedence Rules
    Sorting Rows
    Introduction to Functions
    Single Row Functions
    Character Functions | Number Functions
    Date Functions | Conversions Functions
    General Functions
    Data Manipulation Language (DML)
    INSERT Statements
    Updating Column Values and Deleting Rows
    Data Definition Language (DDL)
    Creating Tables | Using Data Types • Modifying a Table
    Constraints
    Intro to Constraints; NOT and UNIQUE
    PRIMARY KEY, FOREIGN KEY, and CHECK
    STATISTICS FOR DATA SCIENCE
    Data types and its measures
    Random Variables and its applications
    Introduction to Probability with examples
    Sampling Techniques – Why and How
    Measures of Central Tendency- Mean, Median, Mode
    Measures of Dispersion- Variance, Standard Deviation, Range
    Measures of Skewness & Kurtosis
    •Normality tests for dataset
    •Basic Graph Representations- • Bar Chart, Histogram, Box Plot, Scatterplot
    •Probability Distributions
    Continuous Probability Distribution
    Normal Distribution
    Standard Normal Distribution(Z)
    F-Distribution
    Chi-Square Distribution
    Discrete Probability Distribution
    Binomial Distribution
    Poisson Distribution
    •Building Normal Q-Q Plot and its Interpretation
    •Central Limit Theorem for sampling variations
    Confidence Interval – Computation and analysis
    EXPLORATORY DATA ANALYISIS
    •Data Cleansing (Dealing with Missing Data, Outlier Detection)
    •Feature Engineering (Label Encoding, One-Hot Encoding)
    •Sampling Techniques (Balanced, Stratified, ...)
    •Data Partitioning (Create Training + Validation + Test Data Set)
    •Transformations (Normalization, Standardization, Scaling, Pivoting)
    •Data Replacement (Cutting, Splitting, Merging, ...)
    •Imputation (Replacement of Missing Observations with Statistical Algorithms)
    LINEAR ALGEBRA FOR DATA SCIENCE
    •Motivation – Why to learn Linear Algebra?
    •Representation of problems in Linear Algebra
    •Visualizing the problem: Line
    •System of linear equations
    •Planes
    •Matrix
    •Terms related to Matrix
    •Basic operations on Matrix


      تحديث بتاريخ 06 September, 2022

    المتطلبات

    Passion to learn data science 

    دورات يمكنك الالتحاق بها على الفور... خذ دورة عبر الإنترنت على HADOOP ابتداءً من الآن. See all courses

    هل هذه الدورة التدريبية الاختيار المناسب لك؟

    قيِم هذه الصفحة

    لم تجد ما كنت تبحث عنه؟

    أو