Udemy Spark for Machine Learning Udemy
Price: USD 125
  • Duration: Flexible

Course details

Spark lets you apply machine learning techniques to data in real time, giving users immediate machine-learning based insights based on what's happening right now. Using Spark, we can create machine learning models and programs that are distributed and much faster compared to standard machine learning toolkits such as R or Python.

In this course, youll learn how to use the Spark MLlib. Youll find out about the supervised and unsupervised ML algorithms. Youll build classifications models, extracting proper futures from text using Word2Vect to achieve this. Next, well build a Logistic Regression Model with Spark. Then well find clusters and correlations in our data using K-Means clustering. Well learn how to validate models using cross-validation and area under the ROC measurement.

Youll also build an effective Recommendation Model using distributed Spark algorithm. We will look at graph processing with GraphX library. By the end of the course, youll be able to focus on leveraging Spark to create fast and efficient machine learning programs.

About the author

Tomasz Lelek is a Software Engineer who programs mostly in Java and Scala. He is a fan of microservices architecture and functional programming. He dedicates considerable time and effort to be better every day. Recently, hes been diving into Big Data technologies such as Apache Spark and Hadoop. He is passionate about nearly everything associated with software development.

Tomasz thinks that we should always try to consider different solutions and approaches before solving a problem. Recently, he was a speaker at several conferences in Poland - Confitura and JDD (Java Developers Day) and also at Krakow Scala User Group.

He also conducted a live coding session at Geecon Conference.

Updated on 14 November, 2018
Courses you can instantly connect with... Do an online course on Machine Learning starting now. See all courses